26 research outputs found

    Formal Verification of a Rover Anti-collision System

    Get PDF
    In this paper, we integrate inductive proof, bounded model checking, test case generation and equivalence proof techniques to verify an embedded system. This approach is implemented using Systerel Smart Solver (S3) toolset. It is applied to verify properties at system, software, and code levels. The verification process is illustrated on an anti-collision system (ARP for Automatic Rover Protection) implemented on-board a rover. Focus is placed on the verification of safety and functional properties and the proof of equivalence between the design model and the generated code

    Global Guidance for Local Generalization in Model Checking

    Get PDF
    SMT-based model checkers, especially IC3-style ones, are currently the most effective techniques for verification of infinite state systems. They infer global inductive invariants via local reasoning about a single step of the transition relation of a system, while employing SMT-based procedures, such as interpolation, to mitigate the limitations of local reasoning and allow for better generalization. Unfortunately, these mitigations intertwine model checking with heuristics of the underlying SMT-solver, negatively affecting stability of model checking. In this paper, we propose to tackle the limitations of locality in a systematic manner. We introduce explicit global guidance into the local reasoning performed by IC3-style algorithms. To this end, we extend the SMT-IC3 paradigm with three novel rules, designed to mitigate fundamental sources of failure that stem from locality. We instantiate these rules for the theory of Linear Integer Arithmetic and implement them on top of SPACER solver in Z3. Our empirical results show that GSPACER, SPACER extended with global guidance, is significantly more effective than both SPACER and sole global reasoning, and, furthermore, is insensitive to interpolation.Comment: Published in CAV 202

    Global Guidance for Local Generalization in Model Checking

    Get PDF
    SMT-based model checkers, especially IC3-style ones, are currently the most effective techniques for verification of infinite state systems. They infer global inductive invariants via local reasoning about a single step of the transition relation of a system, while employing SMT-based procedures, such as interpolation, to mitigate the limitations of local reasoning and allow for better generalization. Unfortunately, these mitigations intertwine model checking with heuristics of the underlying SMT-solver, negatively affecting stability of model checking. In this paper, we propose to tackle the limitations of locality in a systematic manner. We introduce explicit global guidance into the local reasoning performed by IC3-style algorithms. To this end, we extend the SMT-IC3 paradigm with three novel rules, designed to mitigate fundamental sources of failure that stem from locality. We instantiate these rules for the theory of Linear Integer Arithmetic and implement them on top of Spacer solver in Z3. Our empirical results show that GSpacer, Spacer extended with global guidance, is significantly more effective than both Spacer and sole global reasoning, and, furthermore, is insensitive to interpolation

    AMELIE speeds Mendelian diagnosis by matching patient phenotype and genotype to primary literature

    Get PDF
    The diagnosis of Mendelian disorders requires labor-intensive literature research. Trained clinicians can spend hours looking for the right publication(s) supporting a single gene that best explains a patient’s disease. AMELIE (Automatic Mendelian Literature Evaluation) greatly accelerates this process. AMELIE parses all 29 million PubMed abstracts and downloads and further parses hundreds of thousands of full-text articles in search of information supporting the causality and associated phenotypes of most published genetic variants. AMELIE then prioritizes patient candidate variants for their likelihood of explaining any patient’s given set of phenotypes. Diagnosis of singleton patients (without relatives’ exomes) is the most time-consuming scenario, and AMELIE ranked the causative gene at the very top for 66% of 215 diagnosed singleton Mendelian patients from the Deciphering Developmental Disorders project. Evaluating only the top 11 AMELIE-scored genes of 127 (median) candidate genes per patient resulted in a rapid diagnosis in more than 90% of cases. AMELIE-based evaluation of all cases was 3 to 19 times more efficient than hand-curated database–based approaches. We replicated these results on a retrospective cohort of clinical cases from Stanford Children’s Health and the Manton Center for Orphan Disease Research. An analysis web portal with our most recent update, programmatic interface, and code is available at AMELIE.stanford.edu

    Generalized Property-Directed Reachability for Hybrid Systems

    Full text link
    Generalized property-directed reachability (GPDR) belongs to the family of the model-checking techniques called IC3/PDR. It has been successfully applied to software verification; for example, it is the core of Spacer, a state-of-the-art Horn-clause solver bundled with Z3. However, it has yet to be applied to hybrid systems, which involve a continuous evolution of values over time. As the first step towards GPDR- based model checking for hybrid systems, this paper formalizes HGPDR, an adaptation of GPDR to hybrid systems, and proves its soundness. We also implemented a semi-automated proof-of-concept verifier, which allows a user to provide hints to guide verification steps.Comment: To appear in VMCAI 202

    Social Pedagogy: An Approach Without Fixed Recipes

    Get PDF
    A historical and theoretical reconstruction of the specificity and peculiarity of the discipline of social pedagogy, as it has developed in Denmark. Social pedagogy takes its departure from the idea that the individual person and the community are complementary but at the same time opposed to each other, so the task of social pedagogy is rebalancing the dynamics between the two. Social pedagogy is also characterised as a discipline with three dimensions: a practical dimension, a theoretical dimension and a professional dimension. The professional’s task is neither to apply theory in practice nor to uphold the usual practice; it is to mediate between theory and practice. The specificity of the discipline gives rise to particular challenges and dilemmas that theorists make understandable and transparent and practitioners have to deal with. A big challenge for social pedagogy is the quest for evidence-based methods that overrides the specificity of the social pedagogical approach. Balancing different forms of knowledge implies that programmes and methods are used as inspiration that can be contained in a social pedagogical approach
    corecore